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This paper is concerned with the problem of strict convexity preserving inter­
polation in one variable. It is shown that a strictly convex Hermite interpolant to
strictly convex data can always be chosen smooth and even to be a polynomial.
Furthermore, two-point Hermite strict convexity preserving interpolation schemes
using neither tension parameters nor additional knots are classified according to a
number of certain desirable properties like symmetry, quadratic exactness, affine
invariance, etc. One of the main results is the characterization of the set of
such methods as a one-parameter family of solutions to certain boundary value
problems. ,,[;, 1994 Academic Press, Inc.

1. INTRODUCTION

Shape preserving and especially convexity preserving approximation and
interpolation has become an issue of increasing importance during the past
few years. While most of the attention seems to be paid now to multivariate
problems, we wish to address here some univariate aspects which we find
of interest in their own right but which may also be of some help for
systematic multivariate investigations.

The existing numerous univariate methods may be roughly divided into
two groups. One of the first papers addressing shape preserving
requirements is due to Schweikert in 1966 [15]. He introduced the idea of
tension, an extra parameter whose adequate choice produces convexity
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CONVEXITY PRESERVING INTERPOLATION 3

preserving interpolants. After Schweikert's work, many type of tensioned
interpolants were described (see the examples mentioned in [3]). Alter­
natively, in [6] and later in [14] piecewise quadratic polynomials were
used achieving C I continuity to obtain convexity preserving interpolants
by introducing additional knots. This knot insertion can be viewed as
providing a new free parameter, i.e., as a way of applying tension (see [3]).
For further information on piecewise polynomial convexity preserving
interpolation see [4, 5, 9, to].

In this paper we study and classify methods which neither introduce new
knots nor tension parameters. One example of such methods was con­
sidered by Schaback [12] in 1973. He studied interpolation with C2

rational splines of the form

at + b,x + c,x2

fl[x"x,+iJ(x)= d+
j ejx

This method being similar to interpolation by cubic splines preserves
convexity, but requires nonlinear procedures to determine the interpolants.

This paper is organized as follows. In Section 2, we define the meaning
of (strictly) convex data and prove that strictly convex data always admit
strictly convex interpolants of arbitrary smoothness.

In Section 3, some desirable properties of local two-point strict-convexity
preserving interpolation methods are compiled and discussed. These
properties provide useful tools for the classification of aU the known
methods of (strict) convexity preserving interpolation. Tension methods
can be included if the tension parameter is data dependent. It is also shown
that those methods which depend continuously on the data are necessarily
nonlinear.

Finaly, Section 4 and Section 5 are devoted to a complete characteriza­
tion of all these methods satisfying the requirements mentioned in Section 3
by means of a family of boundary value problems for certain ordinary
differential equations.

2. STRICTLY CONVEXITY PRESERVING INTERPOLATION BY

SMOOTH FUNCTIONS

Aside from establishing existence of convexity preserving interpolation
schemes an important issue is to select among all such schemes a particular
one which has certain additional desirable properties. However, if one
insists on smoothness as such an additional requirement one may encoun­
ter data which admit convex but not smooth convex interpolation.

For instance, the unique convex interpolant to the data (j, Ii I), j = - 2,
-1,0,1,2 on the interval [-2, 2J is given by f(x) = Ixl which is not
everywhere differentiable.
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In order to avoid such complications we will restrict our attention to
strictly convex data.

DEFINITION 2.1. A set of data is said to be strictly convex, if there exists
a strictly convex interpolant to these data.

Given a=xI~x2~ ... ~Xn=bEIR with X i <X j +2, i=1, ...,n-2, and
strictly convex data fj E IR, we wish to find a strictly convex continuously
differentiable function f satisfying Ai(f) =/;, where

if Xj_I=X i ,

otherwise.

Defining

if X j + I = Xi'

otherwise,
(2.1 )

a necessary condition for the data to be strictly convex is that

(2.2)

In Theorem 2.2, we show that this condition is also sufficient to ensure
the existence of a strictly convex smooth interpolant.

It is always possible to introduce additional data which are compatible
with condition (2.2), and thus every solution of the extended interpolation
problem is, in particular, a solution of the original problem.

To be more specific, let X j be a single point in the sequence

Making Xi a double point

one may, for instance, choose (mj_l,j+mj,j+d/2 as the value for j'(xj ).
Likewise, choosing appropriate values for the slopes at the end points of
the interval if necessary, we may in the following assume without loss of
generality that the given data set is complete which means that function
values and slopes are prescribed at each point.

THEOREM 2.2. Given any point Xl < X2< ... < Xn in the closed interval
[a,b] andYi,mjEIR, i=l, ...,n such that

i = 1, ..., n - 1, (2.3 )
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there exists a strictly convex polynomial P such that

5

i= 1, ... , n,

i= 1, ..., n.

More precisely, P can be chosen to satisfy

P"(x)~r, XE [a, b], (2.4)

for some r > O.

Proof The first step is to construct for some k ~ 2 a strictly convex Ck

interpolant f satis£ying f"(x) >0, XE [a, b]. To this end, let

(2.5)

which is a positive constant by (2.3) and define

so that Yi' miE IR, i= 1, ..., n are perturbed values and slopes still satisfying
(2.5) and the analogous quantity defined by (2.5) is f,/2. Let

and

s(x):= max Li(x),
i= I, .... n

then s is convex, piecewise linear and has no breakpoints at the Xi'
Now let k be an arbitrary but fixed positive integer. If N is sufficiently

large, depending on k and the data, the Nth order Bernstein polynomials

(
Xi+ 1- X)N-j

Xi+I-X i

satisfy

BN.i(S)(X,)=Y" B',v.i(S)(X,)=m" B~~j(s)(x,)=O,

r = 2, ..., k, 1= i, i + 1.
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Hence the function 1defined by

11 [x" Xi+1] = B N , ,(s)

has by construction continuous derivatives of order k and is convex
because s is convex, Thus the function

is a strictly convex function satisfying the interpolation conditions

Moreover,

f(x,)=y,

f'(x,) = m,
i= 1, "', n.

XE [a, b].

Let H 2n _ 1(f) be the unique polynomial of degree 2n - 1 satisfying

i= I, "., n, (2.6 )

and define

f(x)-H2n - 1(f)(X)
g(x):= nn (_ )2 =[Xj,X1,X2'X2"",Xn,Xn,X]f,

j~ 1 X X j

where the expression on the right hand side denotes the divided difference
of f with respect to the points listed between the square brackets. Thus g
is C 2 [a, b] provided that k ~ 4. Hence for every 0 > 0, there exists some v
an a polynomial P v of degree v on [a, b] such that

Setting

max Ig(l)(x)_p~n(x)l~o,
xE[a.b]

1=0, 1,2. (2.7)

n

Ab(x) :=H2n - 1(f)(X)+ n (X-Xj )2 P,,(x),
j~1

we see that A b still satisfies the interpolation conditions (2.6), while
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max II"(x) - A;;(x)1 ~ C<5,
xE[a.b]
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for some constant C independent of <5. Hence for <5 sufficiently small we
obtain

xE[a,b].

Taking P = A" and r = 8/4, the result follows. I
The previous theorem shows that condition (2.2) characterizes strictly

convex data. Furthermore, it shows that strict convexity preserving inter­
polants can be made arbitrarily smooth, even analytic so that they satisfy
(2.4) for some r > 8/4, 8> 0 given by (2.5), which is clearly stronger than
strict convexity.

Our proof can also be regarded as a WeierstraB theorem for strictly con­
vex interpolants. The set of strictly convex polynomial interpolants is dense
in the set of strictly convex interpolants with respect to the topology of
uniform convergence.

3. SOME PROPERTIES OF LoCAL METHODS

In this section we shall restrict our attention to the problem of finding
strictly convex C' interpolants. Let us denote by K' [a, b] the set of all
strictly convex functions in C1[a, b].

As mentioned in the previous section, we may assume that the given set
of data is complete. If the interpolant needs only to be K', each complete
problem can be split into several two-point problems of the type

f(x i) = Yi'

!'(x;)=mi,

f(xi+d=Yi+l,

!'(xi+,)=mi+1 ,

i= 0, ..., n -1, (3.1 )

and a solution may be described as a piecewise function such that in each
subinterval [x;, x i + I]' i=O, ... , n -1, coincides with a solution of each of
the problems (3.1). That means that for each set of data the computation
of an interpolant can be done in such a way that changing the data at Xi'

i = 0, ..., n produces changes only on the subintervals next to Xi' Therefore
the problem of Hermite interpolation with K 1 functons can be solved by
means of local methods.
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Let us define the mapping

(3.2)

which is surjective by the characterization of the strictly convex data
obtained in the last section.

DEFINITION 3.1. A local strict convexity preserving method by C I

functions, or simply a Kl-method is a collection of mappings

P( ·Ixo, xd: 1R 2 x IR~ -+ Kl[xo, Xl]

ul--+P(ulxo,x[l

defined for all Xo ,o6xl such that Lxo.xJP(ulxo, xd) = u, for all UE 1R 2 x IR~,

where [xo, Xl] also denotes the closed interval [Xl' Xo] for Xo>x l .

We proceed now to collect and discuss some desirable properties of two­
point (local) Hermite interpolation schemes preserving strict convexity.

Symmetry

Since the interpolation conditions are identical for P(uo, ul , U2' u3 1XO, X1l
and for P( uI' UO, U3' u21 Xl' x o), the methods should be symmetric, that is,

Continuity

The set KI[xO' Xl] inherits the topology of the space Cl[xo, Xl], i.e.,
givenfn,fEKI[xo, Xl], we say thatfn-+fin KI[xO,X I] when

uniformly in [xo, Xl]

and

f~ -+ f'

DEFINITION 3.2. A Kl-method is said to be continuous if

is a continuous mapping for all X o # X I .
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THEOREM 3.3. There exists no extended continuous mapping 15: [R4 _

C'[a,b], with La.b(15(u)=u, for all uE[R4, such that 15([R2x[R~)£;

K'[a, b].

Proof Let un = (0,0, lin, 1) E [R2 X [R~ and fn = 15(un) E K 1[a, b]. The
sequence un converges to u = (0,0,0, 1) ¢ [R2 X [R~. Let f be 15(u) E

C1[a, b].
Suppose that 15 is continuous. Then fn --+fin c' [a, b]. The functions fn

are convex and

Hence, we have

fn(a) = 0,

-1
f~(a)=-b-,

-a

fn(b) =0,

f~(b)=n(b~a)

-1
fn(x)~n(b-a) (x-a),

However, the functions

{

-I x-a
-.--

n b-a
CPn(x):= _ b-x

b-a

if x E [a, an:nIbJ
if xE [a + nb bJ'

n + 1 '

are negative, continuous, and converge uniformly to O. Since CPn ~fn ~ 0, fn
converges to zero uniformly as n tends to infinity. Furthermore, since fn --+ f
in C'[a, b] we conclude thatf=O and thus

La. b(f) = (0, 0, 0, 0),

which contradicts that f = 15(0,0,0, 1). This proves that such a mapping
cannot exist (see Fig. 3.1 ). I

An interesting consequence of Theorem 3.3 is that K'-methods cannot be
linear.

COROLLARY 3.4. There exists no linear K'-method.

Proof If for some Xo =F x 1 the mapping P(·I xo, Xl) were linear, we
would be able to extend it by linearity to

15: 1R4
--+ c' [xo, x,].

Since 1R4 is a finite dimensional vector space, 15 must be continuous, which
contradicts Theorem 3.3. I
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a b

'PI

FIGURE 3.1

Change of Interval

Affine changes of variables take convex functions into convex functions
on some other interval. Thus the question arises whether a K1-method is
invariant under affine transformations of the domain.

DEFINITION 3.5. A K1-method P( ·1 xo, x d is affinely invariant if

(3.4 )

for all bijective affine maps A: Il;I! --+ 1l;I!.

From (3.4) we obtain the following formula of change of interval:

(3.5 )

Using the symmetry property (3.3), we also derive the following formula of
inversion of the interval:

P(u 1, UO, u3, u2lxo, xd(x)=P(uo, Ul, U2' u3lxo, xd(xO+x1-x). (3.6)

Homogeneity of the Method

Clearly a function f is strictly convex if and only if if is strictly convex
for any t E Il;I! + .

DEFINITION 3.6. A K1-method P(·I X o, xd is said to be homogeneous if

for all t E Il;I! + . (3.7)

Invariance under Addition of Affine Functions

Obviously K 1[xo, Xl] is invariant under addition of affine functions.
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DEFINITION 3.7. A Kl-method P(·I x o, xd is invariant under addition
of affine functions, if

P(u + L~o. x, glxo, XI) = P(ul Xo, Xl) + g. (3.8 )

for all affine functions g.

From the previous definition follows that any method which is invariant
under addition of affine functions satisfies

Xl -X X-Xo+--vo+--vl • (3.9)
X1-XO Xl-Xo

Quadratic Precision

Strictly convex quadratic functions are the simplest functions in
K1[xo,Xl]. We use the notation

n; [xo, Xl] =KI[xO' Xl] nn2 [XO, XI], (3.10)

where n 2 [xo, XI] denotes the vector space of polynomials of degree less
than or equal to 2 on [xo, X I]. From the fact that the second derivatives
of quadratic functions are constant, one easily derives that

L~o.~Jn; [xo, Xl]) = {(uo, Ul, U2, U3) E [R2 X [R~ IU2 = U3}'

DEFINITION 3.8. A Kl-method P( ·Ixo, xd is said to have quadratic
precision, if

P( L Xo. x I (q ) IX 0, Xl) = q (3.11 )

that is, P(uo,ul,u2,u3!Xo,XdEn;[Xo,x l ] if and only ifu2=u3

If a Kl-method P( ·Ixo, Xl) has quadratic precision then we have

P(uo, U l , U, u) = Uo' Ao(X) + U l . Al (x) - u· Ao(X) Al (x),

where Ao, Al are the barycentric coordinates of x with respect to the inter­
val [Xo, Xl]

XI-X
)'o(x)=--,

xl-xo

1 X-Xo
Al(X)=--,

xl-XO

(3.12 )

Restriction Property

It would be a desirable feature of a method, if the restnctlOn of a
solution to a smaller interval were a solution on this interval,
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for all [~o, ~I] ~ [xo , XI]. This restriction property makes it possible to
construct interpolants by subdivision. More precisely if we were able to
evaluate P(u IX o , X I) and its derivative at some point X 1/2 E (xo , X d, then
the interpolant on [xo, X I] could be obtained by solving to subproblems
on the intervals [xo , x 1/2 ] and [XI/2, Xl].

We can ask now the inverse question. Do there exist extended solutions?

DEFINITION 3.9. A solution of a Kl-method P( ·Ixo,xd is a strictly
convex function IE C I(I) for some interval I, such that for each Xo #- X I EI,
we have

If P( ·1 Xo, X I) satisfies the restriction property, then every function of the
form P(u Ix o, X d is a solution and the restriction of any solution to a
smaller interval is also a solution.

DEFINITION 3.10. Let IE CI(I) be a solution of a KI-method, a solution
g E CI(J) is said to be an extension oflif I~ J and gil = f We writeI~ g
to express that g is an extension of f

DEFINITION 3.11. Let IE c l (I) be a solution. The solution I is said to
be maximal, if there exists no extension ofI except I itself.

If the restriction property holds it can easily be proved using Zorn's
lemma that for every solution I: I ~ IR, there exists a maximal solution
g: J ~ IR such thatI~ g.

The restriction property plays a central role in the following section.

4. DIFFERENTIAL EQUATIONS AND KI-METHODS

The following set

B := {ax + b - J ex + dl a, b, e, dE IR, e#-O}

u {ax2 +bx + c Ia, b, C E IR, a > 0}, (4.1 )

of strictly convex functions defined on intervals, whose graph is contained
in a proper parabola, and the set

R := {ax + b + ex ~ d Ia, b, e, dE IR, e#-o}

u {ax2 + bx + c Ia, b, C E IR, a > 0 } (4.2)
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of strictly convex functions defined on intervals, whose graph is contained
in a hyperbola with a vertical asymptote or in a parabola with vertical axis
will play an important role in the subsequent analysis. To this end, observe
that

B(u IXo, xd = UOAO(X) + U I Al (x)

-2AO(X) Al (X)!(AO(X) + AI(X) +
U2 U3

and

(4.4 )

where Ao(x), ), 1(X) denote the barycentric coordinates of x with respect to
the points Xo, XI defined in (3.13), are the unique solutions of the strictly
convex interpolation problem L xo ,xJf) = U, U E 1R 2

X IR~ in the sets Band
R, respectively.

We sketch here only the proof of the case (4.3). The proof of (4.4)
is completely analogous and is left to the reader (see the paper by
Schaback [12]).

Let f(x) be an interpolant in B. Assuming first that U2"# U3' let

(4.5)

so that L xo . XI (g) = (0, 0, U2' U3)' It is easy to see that g must be of the form

g(x) = aAo(x) + bAI(X) - Ja 2Ao(x) + b2AI (X). (4.6)

Now upon differentiating, we obtain

that is,

This provides

(4.7)
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proving the uniqueness of the interpolant. Inserting these values into (4.7),
provides

(4.8 )

Multiplying and dividing by the conjugate

we obtain an expression which is also valid for the case U2 = U 3

(4.9)

so that formula (4.3) is readily obtained.
Taking convex combinations of the formulas (4.3) and (4.4), we obtain

the intermediate K1-methods

WE [0,1], (4.10)

covering (4.3) and (4.4) as extreme cases.
From formulae (4.3) and (4.4) we readily derive additional information

on B( ·1 x o, x I) and R( ·1 x o, Xl), namely, that both methods are continuous,
affinely invariant, symmetric, invariant under addition of affine functions,
homogeneous, and have quadratic precision.

These properties are also inherited by the intermediate methods
p w( ·1 X o, x d· However, the methods B(·I X o, x d and R( ·1 X o, x d have the
additional feature that the restriction property holds. In both cases, the sets
of functions Band R play the role of the set of maximal solutions whereas
the mixed methods P",(·I X o, x d, WE (0, I) do not share the restriction
property. This indicates that it is the restriction property which is hard to
realize for a K1-method.

To shed some further light on this observation it is important to note
that the sets B of (4.1) and R of (4.2) can be characterized by a property
of the second derivative, namely,

B = {J 1 j"(x) = (ex + d) -3/2, (e, d) # (O,O)}

R= {J1j"(x)=(ex+d)-3, (e, d)#(O, OJ}.

(4.11 )

(4.12 )
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UfEE (resp.fER), then (/,,)'-). is linear for ),=5/3 (resp. ),=4/3), and
f is a solution of

(y"')2
yIV =), __,,_,

y
y">O. (4.13 )

This suggests the following considerations. Let

F: IR x IR x IR x IR + x IR -+ IR

(x, y, y/, y", y"')f-+F(x, y, y', y", y"')

be a continuous function such that the boundary value problem given by

yIV(X) = F(x, y(x), y'(x), y"(x), y"'(x))
(4.15 )

has always a unique solution in K' [xo, Xl]. Then the solutions of these
boundary value problems generate a K1-method PF(ulxo, xd, which
automaticaly satisfies the restriction property. Our next result shows that,
under some additional conditions on the method, F has a special form.

THEOREM 4.1. Suppose the fourth order differential equation

yIV = F(x, y, y', y", y"'), (4.16 )

where FE C(IR x IR x IR x IR + x IR) defines a K'-method with the properties
of affine invariance, invariance under addition of affine functions and
homogeneity. Then there exists a ), E IR such that F takes the form

, "", (y"')2
F(x, y, y, y ,y ) = ), -,,-.

y
(4.17)

Proof. By the existence theorem for ordinary differential equations we
know that under the above assumptions on F, every initial value problem
of the form

yIV = F(x, y, y', y", y"'),

y(xo) = Yo,

y/(xo) = y~,

y"(xo) = Yo> 0,

y"'(xo) = Yo',

(4.18 )

always has a solution in a neighbourhood of Xo' Hence, for some closed
interval [a, b] containing xo, we obtain a solution f: [a, b] -+ IR, which is

640/77/1-2
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given by PF(L a• b(f) Ia, b). We will point out next how the required
properties affect the structure of F.

We know that iffE C 4 [a, b] is a solution of the differential equation and
the method is invariant under affine transformations of the domain, then

f(·-c): [a+c,b+c]--+IR

xt--+ f(x - c)

is also a solution. This implies that

Since xo, Yo, Y~, Y~, y~', c are arbitrary we conclude that F is independent
of its first argument. Hence, we can drop the argument X o from F.

If the method is invariant under addition of affine functions and if f(x)
is a solution, so is f(x) + a + bx. In particular, adding constant functions a,
we derive

and so F does not depend on Yo. Furthermore, adding b(x - xo), we
conclude

and F is seen to be independent of the variable y~. Hence the number of
arguments of F may be further reduced to y~ and y~'.

By homogeneity )"f(t) solves the problem for )"y~ and )"y~', if f solves it
for y~ and y~', which means that

F()"y~, )"y~') = )"F(y~, y~') for all )" E IR. (4.19 )

The affine invariance with respect to the domain implies that if f: 1--+ IR
is a solution of the differential equation, then

1
f(r·): - 1--+ IR

r

xt--+f(rx)

is also a solution which implies that

(4.20)
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If y~' #0, taking r= y~/y~' in (4.20) and applying (4.19), we deduce that

" m (y~')4 (y~)3 (y~)3) (y~'f
F(yo, Yo ) = y; F (y;')2' (y;'f = y; F(l, 1).

On the other hand, if y~' = 0, we can derive from the continuity of F that
F(y;, 0) = O. Then choosing A. = F(I, 1) formula (4.17) is confirmed. I

So far we have imbedded the class of interesting Kl-methods into a one
parameter family. In remains to identify the feasible parameters A..

5. BOUNDARY VALUE PROBLEMS WITH FEASIBLE PARAMETERS

In this section we shall characterize the values of A. E IR such that the
boundary value problem

IV (ym)2
y =),,--,,-,

y
y">O,

(5.1 )

defines a Kl-method.
In the sequel we make repeated use of the following simple observation.

LEMMA 5.1. Let ll(x), 12(x) be two increasing affine functions. Then

(a) there exist two constants A, BE IR, A > 0 such that

(b) There exist two constants .4, BE IR, .4 > 0 such that

Proof The result follows immediately from straightforward calcula­
tions. I

Let us remark that a solution of (5.1) has a third derivative which is
always positive, always zero or always negative. Now using this tricotomy
and the Lemma 5.1, we can easily describe the set of maximal solutions of
the differential equation in (5.1).

THEOREM 5.2. Let fA be a maximal solution of the differential equation

IV (y"')2
Y =.,1,'--,,-,

Y
y">O, (5.2)



18 CARNICER AND DAHMEN

such that ft # 0, then every other maximal solution g;. (x) is given by

a>O,

) () {
tif;.(bX)+CX+d, a, b>O,

(a g;. x =
tif;.(x+b)+cx+d, a>O,

if g~'(x) has the same sign as n'(x),

(b) g;.(x)=ax2 +ex+d,

if gt(x) = 0 for all x and

( () {
tif;. ( - bx) + cx + d, a, b > 0,

c) g;. x =
tif;. ( - x + b) + ex + d, a > 0,

if ..1.=1,
if A. # 1,

if ..1.=1,
if A. # 1,

(5.3 )

(5.4 )

(5.5 )

if gt(x) has opposite sign to f~(x).

Proof

Case (a) Without loss of generality we can assume that ft > 0 and
therefore g~' > O.

Suppose first that A. = 1. Then the maximal solutions g;. with gl'(X) > 0
are functions defined on the whole real line whose second derivatives are
exponentials of increasing linear functions. Thus the functions log(gn and
log(fn are increasing and linear. By Lemma 5.1, there are constant A> 0,
11 E IR such that

log g~(x) = log f~(Ax) + 11.

Therefore, we have

i.e.,

whence we conclude

The assertion follows now with a =elJjA2 > 0 and b = A > O.
Suppose now A. # 1, ten the maximal solutions g;. with g~' > 0 are

only defined at those points in which the linear function (g1)I/(1 - A) is
positive, Le., fA and g;. are defined on a half line. On the other hand,
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(1 - ).)(g;)I/(I-,l.) is an increasing linear function. Thus there exists A> 0,
B E ~ such that

(1 - A)(g;)I/(I-,l.) (x) = (1 - A)A . (/;)1/(1 -,I.) (x + B).

Furthermore, x E Dom g,l. if and only if (gJ)I/(I-,l.) (x) >°which can be
expressed in terms off by A(/;)I/(I -,I.) (x +B) > 0, that is x +BE Domf,l..

Raising both sides of

(g;)l/(l-,l.) (x) = A . (/;)1/(1-,1.) (x + B)

to the power 1 - A provides

g,l. - A1-'l,l.(x + B) = ex + d.

Taking a=A 1 -)., b=B confirms formula (4.23).

Case (b) g~' = 0. In this case, the maximal solutions are the
quadratic functions q,l. (x) = ax2 + ex + d, a> 0.

Case (c) gY'{x) <0. The function g,l.(-') is a maximal solution
belonging to the Case (a). Thus the problem can be reduced to
Case (a). I

In view of Theorem 5.2, the problem of describing every maximal solu­
tion is reduced to finding only one maximal solution for every A.. In the
following table we give a choice of a simple function f,l. with the property
/;'>0:

Values of A

,1>2

,.1.=2

,.1.=1

Solutions f,l.

f,l.:~--~

x~ (_X)2-(I/(,I.-I»

f,l.: ~--~
x~ (-x) ·log( -x)

f,l.: ~--~
x~ -(-Xf-(I/(,I.-I»

f,l.:~-~

x~ -log( -x)
f).:~---+~

x~ (_x)(I/(,I.-I»-2

f,l.:~-~

x~eX

f,l.: ~+-~
x ~ x 2 + (1/(1- ,I.»
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Note that 2 = 5/3 and 2 = 4/3 corresponding to methods (4.3) and (4.4)
are the only values such that the graphs of the solutions of the differential
equations are conic sections.

The above table has a close relationship to the literature on nonlinear
splines. The exponentials 2= 1 have a long history (see [15, 1,8,11] for
more references). The functions with 2 = 4/3 were studied in [12] for
Lagrange interpolation. The other cases of the table occur in [13]. Mini­
mization properties and computation of the nonlinear spline functions
based upon piecewise solutions of (5.2) can be found in [2] (see also [7]).

Now let us return to the main objective of this section, namely, to deter­
mine whether for a given value of )., the boundary value problem (5.1)
defines a KI-method satisfying the properties mentioned in Section 3. In
view of the properties of the solutions of the differential equation (5.2), this
question is equivalent to showing that the boundary value problem (5.1)
has always a unique solution which depends continuously on u.

THEOREM 5.3. Let t/t A: D). --+ (0, 1) be given by

{

CO, 0, x] fA

t/tA(X):= [O,x,x]fA'
[x, X, X+ l]f;

[x, x + 1, x + 1] f/

where

if 2=1
(5.6 )

._ {( - 00, -1)
D;..- IR+

if 2>1

if 2 ~ 1,
(5.7)

and fA is the function defined in the above table. Then

(a) The boundary value problem (5.1) has always a solution if and only
if t/tAis surjective.

(b) The boundary value problem (5.1) has no more than one solution
(uniqueness) if and only if t/t Ais injective.

(c) The boundary value problem (5.1) has always a unique solution
which depends continuously on u in K I [xo, x I] if and only if t/t Ais bijectire
and t/t.!1 is a continuous function.

Proof Note first that from the definition of t/t;. and f7' >°it follows
that t/tA(D;.)<;;'(O, 1).

Due to the invariance under changing the interval, we can use formula
(3.5) to reduce our problem to the standard interval [0,1]. Inverting the
interval if necessary using formula (3.6) we may assume that U2 ~ u3 .
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Moreover, since we can add an adequate affine function, we can assume
further that U o = U I = 0. By homogeneity, we can also rescale U2 :::; U3 so that
U 3 = 1. Thus the problem is reduced to finding a function g E C 4[0, 1] such
that

IV • (glll)2
g =,.{'--,,-,

g

L O• 1(g) = (0, 0, U2' 1),

g">o,
(5.8 )

Let us analyze first the case U2 =I- 1. Since gill is always positive, always
zero or always negative and [0,0, 1, 1] g = 1 - U2 > 0, we deduce that
g'" (x) > 0, for all x E [0, 1]. On the other hand the functions f" of the
above table satisfy f~>O. From Theorem 5.2, we obtain that

g(x) = {afAbX) + cx + d, a, b > 0,
tif,,(x+b)+cx+d, a>O,

if ). = 1,
if A. =I- 1.

(5.9)

g(x)=

Let us see first that b must be chosen in D". If A. = 1, the condition b > 0
to ensure positivity of the third derivative is equivalent to bED". If A. =I- 1,
we must have that

Dom(af;.(x+b)+cx+d);2 [0,1],

which is equivalent to saying that Dom(f,,);2 [b, b + 1]. If Dom(f,,) = IR + ,

then b can be any value of IR +. If Dom(f,,) = IR _, then b must be chosen
in the interval (- 00, -1). Imposing the interpolation conditions g(O) = 0,
g( 1) = 0, [0, 1, 1] g = 1, we deduce that g is of the form

1
b2[0, b, b]f" [f,,(bx) - f,,(O) + (f,,(0) - f,,(b»x],

if ),=1, (5.10)
1

[b, b + 1, b + 1]fA [fA (x + b) - f" (b) + (fA (b) - f" (b + 1»x],

if ).=1-1,

where bEDA' Now taking into account that [0, 0, I] g = t/J A(b), we deduce
that g(x) is a solution of the boundary value problem (5.8) if and only if
bED" is a solution of the nonlinear equation t/J A(b) = U2, U 2 E (0, 1).

Let us analyze now the remaining case U2 = 1. In this case the solution
g satisfies [0,0,1, l]g=O. This implies that g"'(x)=O for all XE[O, 1]
and then the unique solution of the boundary value problem (5.8) is the
quadratic function g(x) = x(x - 1).

From the above considerations (a) and (b) follow immediately.
For the proof of (c) recall that, when U2 =1-1, the unique solution of the

boundary value problem (5.8) can be written in the form (5.10) with
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b = t/J; 1(U2)' Thus the coefficient b depends continuously on U2 if and only
if the function g depends continuously on U 2 in K 1[0, 1]. On the other
hand, any solution g of the boundary value problem (5.8) with U 2 E (0, 1)
satisfies

1=[0,0, l]g:::;[O, 1, x] g:::; [0, 1, 1]g=u2

because g'" > O. When U2 --+ 1, we have that [0, 1, x] g --+ 1 uniformly and
thus g(x) --+ x(x - 1) uniformly. From

1 = [0, 0, 1] g:::; [x, x, 1] g:::; [x, 1, 1] g --+ 1 uniformly,

we obtain that g'(x) --+ 1 - 2x uniformly. Thus continuity at U2 = 1
follows. I

We will investigate next the properties of t/J;. for the various ranges of A.
To settle the case A= 1 we prove

PROPOSITION 5.4. The function t/J 1 is bijective and t/J 1-' is a differentiable
function.

Proof The function t/J 1 given by

eX -1-x
t/JI(X) = 1 (X X)' x>O,- e -xe

is differentiable and

Therefore it is injective and t/J I' is differentiable. Furthermore

lim t/J 1(x) = 1,
x~o

and thus t/J 1 is onto (0, 1). I

lim t/Jdx)=O
x --+ + 00

LEMMA 5.5. If A# 1, then limlxl~oo t/J;.(x) = 1.

Proof When A # 1,

t/J;.(x)= [x,x,x+l]f;.
[x, x+ 1, x+ l]f;.

By hypothesis, we have ft > 0 and we conclude

[x, x, x] f;. < [x, x, x + 1] f;. < [x, x + 1, x + 1] f;.

< [x+ 1, x+ 1, x+ l]f;.,
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which implies

Il(x)

I " 1 <"'~(x)<1.
~(x + )

But/~:(x)=c~ Ixll/(l-~) for all xEDom/~ and thus

j"(x) I x 11/(l-~)
lim .l = lim -- = 1 I

Ixl-ex,fl(x+ 1) lxi_x x+ 1 .

23

To deal with the remaining cases we employ the following technical
lemma.

LEMMA 5.6. Let

Then one has

x>o. (5.11 )

{
h~(X) < 0
h~(x)<O

h~(x)<O

h~(x»O

if IX < - 2,

if -2<1X<-1,
if -I <IX <0,

if IX> O.

(5.12 )

Proof If IX = -2, -1, 0, h~ = O. Let us assume for the rest of the proof
that IX i= - 2, - I, O. After some straightforward calculations, we obtain

The sign of h~(x) is the same as the sign of

[
(x+ I)H I_X~+ I

(1X+2) 1
a+

which has the same sign as

[
(I+l/X)HI-l 1( 1)'/2J(1X+2) -- 1+- ,

1X+1 x x

Let us define

[
(1 +t)~+1 1 J

g(t):=(1X+2) 1X+1 - -t(l+t)'/2,

XE /R1+,

t~O,
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then sign(h~(x)) = sign(g( l/x)). In order to analyze the sign of the function
g we compute the derivative

g'(t) = (a + 2)(1 + t)~J2-1 [(1 + t)~J2+1 -1- G+ 1) t}

Finally defining

(1 + t)~J2+ 1 - 1 - (a/2 + I) t
k(t) := a/2 + 1 '

we deduce that

sign(g'(t)) = sign(k(t)) = sign(a).

and since g(O) = 0, we obtain sign( g(t)) = sign(a) for t > 0. I

Now we are ready to prove

PROPOSITION 5.7. (a) If2 > 2, then t/J ))s decreasing and t/J. ( - 00, - 1) =
«2-2)/(2-1),1).

(b) If 2<1, then t/J. is increasing and t/J;.(O, +(0)=«1-2)/
(2-2), I).

Proof Let us consider first the case 2 < 1. Then setting a := 1/( I - t.)
(and therefore a> 0) we obtain

(x+ I)H2_ xH2_(a+2)x0+ 1

t/J.(x) = -(x+ I)H2+ XH2+ (a+2)(x+ 1)Hl

(x+ l)~+I_X~+l

= (a + 2) XH2 + (a + 2)(x + 1)0+ 1_ (x + 1)0+2'

i.e., t/J .(x) = h~(x). By Lemma 5.6, this function is increasing.
Analogously, we obtain for 2> 2

I
t/J.(x)=h~(_x_I)' X E ( - 00, -1),

where a = -1/(2 - I) varies in the range (-1,0). Again we infer from
Lemma 5.6 that h~ is decreasing and so is t/J •.

Now, recall that

t/J.(x)= [x,x,x+l]f.
[x, x+ I, x+ l]f/
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where we see from the above table that f). is a function which can be
extended to a strictly convex C 1(1R) function

J).(x) = Ix/ 2+ 1/(1 -).).

Thus, we have for). < 1

I· ,I. () I' [x, x, x+ 1]f).1m '1'), x = 1m
x_o+ x-o+[x,x+l,x+l]f).

Analogously, for ..t > 2 we obtain

[0, 0, 1] J). 1 - ).

[0, 1, 1] JA 2 -).

I' .1. () I' [x, x, x + 1] f;,1m '1') x = 1m
x_-l- x--l-[x,x+l,x+l]f).

[1, 1, 0] f). ). - 2 I
[1, 0, 0] f). ..t - 1

[-l,-l,O]l,

[ -1,0,0] f;,

In neither case, there can be general solution for the boundary value
problem (5.1). For example, when). = 0 we obtain the cubic Hermite inter­
polant and get

(5.13 )

which means that in order to obtain a strictly convex interpolant the
quotient u21u3 is only allowed to vary between 112 and 1, when U2 < U3'

LEMMA 5.8. Letf: IR- -+IREKI (IR-) be a function such that

lim f'(x) = + 00,
x-o-

then

. f(x)
hm_ f'( ) =0.x_o X

(5.14 )

(5.15 )

Proof By the convexity of f, its derivative f' is an increasing function
so that

for X2>X 1 • Since limx_o-f'(x)= +00, f'(x) is positive on some interval
(-£5,0), thus

f(x 1 )+f'(X 1 )·(x2-xd f(x 2) f(xd
f'(X2) ~ f'(X2) ~ f'(x 2)+ X2 - Xl'
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Passing to the limit in the previous inequalities, we obtain

This inequality is valid for each XI E IR _ and so (5.15) holds. I

The following theorem is the main result of this section and describes for
which values of A a solution of the boundary value problem (5.1) always
exists and depends continuously on u.

THEOREM 5.9. t/J;, is bijective if and only if AE [1, 2]. Furthermore, t/J A-I
is a differentiable function.

Proof The case A= 1 was just proved in Proposition 5.4. If AE (1, 2],
limx~o- f~(x)= + 00, which by Lemma 5.8 implies that

Therefore

I· .1, () l' [x,x,x+1Jf;,
1m '/';, x = 1m

x~-I- x~-I- [x,x+l,x+1Jf;,

= lim f;,(x+ 1)- f;,(x)- f~.(x)

x~ -1- fA(x+ 1)- f;,(x+ 1)- fAlx)

= lim [f~(X) _f;,(x-l),+ f~.(x+ I)JI
x~o- fAlx) f;,(x)

[
1 - f;,(x) _f;,(x + 1)J = 0

fAlx) fAlx) ,

and, by Lemma 5.5, t/J;, is surjective. It remains to confirm that t/JA < 0,
which implies that t/J A is a decreasing function and that t/J;~ 1 is differen­
tiable.

For AE (1, ~) and AE (~, 2) we have

.1, ()_ [x,x,x+1Jf;. _ 1
'/';, x - -

. [x,x+l,x+1Jf. he«-I-x)'

-1
with oc = A-I'

where he< is given by (5.11). Since OCE(-OO, -2)u(-2, -1), Lemma 5.6
implies that t/JA < O.
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The only remaining cases are A= ~ and A= 2. To prove that t/J3/2 < 0 we
define a new auxiliary function h: IR + --+ IR given by

h(x)= I + . 1 = 1+ [log(~)_~J/[_l-log (~)Jt/J 3/2 ( - 1 - x) x x x + 1 x

1

x(x+ l)log«x+ l)/x)-x'

h'e -(2x+l)log«x+1)/x+2
x) = -(x-(':-x-+-1-)-'-lo-g-=«:":"'x'-+-l-)/--"x'-)--x--=f

- (2x+ 1)[log(1 +x- 1
) - (2x- I /(2 + X-I ))]

(x(x + 1) loge 1+ X -I) - x f

Moreover, defining the auxiliary function

25
g(s) :=log(l +s)---2' s~O,

s+

the sign of h'(x) coincides with the sign of -g(1/x). Since

I 1 4
g (s)= s+ 1- (S+2)2

S2
-----=>0
(s+ 1)(s+2)2

s~O,

and g(O)=O, we conclude g(s»O for all sEIR+, which implies that
h'(x) < 0 for all XE ~+ and therefore t/J~(x) < 0 for all XE (- 00, -I).

For ), = 2 we can use the same idea. Defining h: IR + --+ IR now by

h(x)= 1 + log«x+ l)/x) ,
t/J2(-1-x) 1-xlog«x+1)/x)

h' _ [log(1 + 1/x)]2-I/x(1 +x)
(x) - [1- x log(1 + 1/x)]2

and

s
g(s) :=log(1 +s)- ~'

y1+s

the sign of h'(x) coincides with the sign of g(l/x). Since

g'(s)=_l__ s+2 _S2 <0
l+s 2J(1+S)3 2J(1+s)3(2~+s+2)

and g(O) = 0, we obtain g(s) < 0 for all s E IR + which implies h'(x) < 0 for
all x E IR + and therefore, t/J~(x) < 0 for all x E (- 00, -I). I
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FIGURE 5.1

FIGURE 5.2
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The previous theorem allows us to define a whole one-parameter family
of K 1 methods p~, ). E [1, 2] enjoying the properties mentioned in Sec­
tion3 by defining P~(ulxo,xd as the solution of the boundary value
problem (5.1). Figure 5.1 shows the graphs of P~(o, 1, 1,9) for the values
of ). = 1, ~, ~, ~, 2. The solution is greater for increasing values of the
parameter A.

In general, low values of A produce solutions which present rapid
variations whereas for high values of A. the solution looks smoother.

As a final example, Fig. 5.2 shows the graph of the solution for the
Hermite problem with complete data

x 0 1 2 3

~
10 0 2 20

-50 3 25

obtained with the local method P 5/4'
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